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Abstract
Using the theory of statistical continuum mechanics, closed expressions are derived for the diffraction

elastic constants of a cubic polycrystal that is statistically homogeneous, isotropic, and disordered.

By measuring these constants for several diffracting planes of a single polycrystal, the single crystal

elastic constants are determined.
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Introduction
The method of statistical continuum mechanics is used in this paper to derive the elastic constants

or elastic moduli of a polycrystal. A polycrystal, whose properties vary in a complicated fashion

from point to point over a small “microscopic” length scale, may appear “on average” to be

uniform or perhaps, more generally, its properties appear to vary smoothly. The determination of

these “overall” properties from the properties and geometrical arrangement of the constituent

grains is the aim of statistical continuum mechanics. In the simplest case the polycrystal is

assumed to be statistically homogeneous, isotropic, and disordered. General expressions for

averages can then be derived. In this process Green’s functions and modifications thereof have

proved to be of great value. The effects of diffraction from a cubic polycrystal are included in the

present treatment.

The analysis starts by defining an “effective medium”, which is a model that approximates the

average state of the polycrystal and describes its average properties. In terms of this effective

medium we can define “effective elastic moduli”, which relate the average stress to the average

strain in the effective medium. The Voigt and Reuss models provide special cases of such an

effective medium and the resulting effective moduli give upper and lower bounds for other

possible effective moduli.

This paper focuses attention on crystals with cubic symmetry. For this case there are only three

independent components of the single crystal elastic moduli. The analysis can then be simplified
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considerably by using Walpole’s notation for the decomposition of “unity”. This approach leads

to a very convenient set of three fundamental components for the cubic elastic moduli.

Regarding the elastic moduli as a fourth rank tensor there exist two invariants, which are a

combination of the tensor components that is independent of rotation in space. From this

consideration we can derive a formula for the spatial average of the tensor. Furthermore by

considering the directional form of Young’s modulus for a cubic crystal we can derive a formula

for the dilfraction average.

For the application of statistical continuum mechanics we use the method of perturbation theory

where a suitable effective medium is defined in terms of its deviation from a “comparison

medium”, which is known and chosen arbitrarily. From the classic equations of elasticity we then

derive the basic integral equation, also known as the LSD equation, which relates the strain in the

polycrystal to the strain in the comparison medium It contains a term, called the modified

Green's function that is derivable from the Green’s function for the comparison medium. Solving

this equation for the case of diffraction and averaging we get a formal expression for the

“approximate effective diffraction elastic constants”.

Specializing to cubic crystal symmetry we derive the Gairola-Kroner formula, which gives the

“approximate effective diffraction shear modulus” of the effective medium that represents the

polycrystal and is given explicitly in terms of the three single crystal elastic moduli and the

diffraction parameter. This formula gives various effective medium approximations for the

polycrystal depending on the choice of the comparison medium

When the comparison medium is set equal to the effective medium there is no more deviation

between the two and the result gives the “self-consistent” moduli. For the cubic case this leads to

a third order polynomial equation for the self-consistent shear modulus.

The two “diffraction elastic constants” of a polycrystal, which are conventionally used to express

the results of diffraction experiments, can be defined in terms of two of the isotropic elastic

moduli, like the bulk and shear modulus. For the cubic case these can then be expressed explicitly

in terms of the three cubic single crystal elastic moduli and the diffraction parameter.

Values of the diffraction elastic constants have been measured for several reflection planes in

some cubic polycrystals. These results can be used to determine the single crystal elastic

constants by a regression analysis. In chi-square we take the two diffraction elastic constants as

the dependent variables and the diffraction parameter as the independent variable. Then chi-

square is minimized with respect to the three cubic elastic constants, which are the unknown

parameters. In this way the three cubic elastic constants are determined. The results for steel,

copper, and aluminum are presented.

Hooke’s Law
For a single crystal Hooke’s law can be written as

(7^
— Cy£/£id

(i) j i
k) l 1

1 2, 3) ( 1

)

where repeated indices are summed, <7 and e are the stress and strain, second rank tensors, and c is

the elastic stiffiiess, a fourth rank tensor. Hooke’s law can also be written in matrix form as
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(i,j = 1,...,9) or (/,
y' = l,..., 6) (2)

where aand e are the stress and strain vectors and c is the stiffness matrix. The matrix form of the

elastic constants or elastic moduli is frequently referred to as the Voigt
1

notation. The three notations

are completely equivalent and in this paper we shall use the symbolic notation

<7 = ce (3)

to represent any of the foregoing equations. Equation (3) can be solved for the strain in terms of the

stress as follows

cr
e = — = so

c

where 5, the elastic compliance, is the “inverse” of the stiffness c.

(4)

The Effective Medium
On a macroscopic scale a polycrystal may be approximated as a homogeneous medium. It can

therefore be represented by an effective medium ,
which is a model that approximately describes the

average properties of the medium to some desired degree of accuracy. In the effective medium the

average stress (a) and average strain (e

)

are related as follows

<<7 > = C(e) (5)

where C is the effective stiffness. So the effective medium is homogeneous. In this paper we shall

assume that it is also isotropic and disordered. Equation (5) can be solved for the average strain

(e) =& = S(a) (6)

where S is the effective compliance. We use the convention that capital letters are used for a fourth

rank tensor if the tensor is constant and thus represents the property of a homogeneous medium or

the average property of a polycrystal. We use lower case letters for a fourth rank tensor if the tensor

varies through the heterogeneous medium or polycrystal and thus represents the property of a single

crystal.

The Voigt and Reuss Models
Frequently the Voigt

1

and Reuss
2
models are invoked to find bounds on the effective elastic moduli.

Voigt assumed there is a constant strain and Reuss a constant stress in the polycrystal. For the Voigt

model the actual strain then equals the average strain

e = (e) (7)

and so we have the following decomposition between the stiffness and the strain

(a) = (ce) = {c){e) (8)

Comparing with (5) we find that for the Voigt model the effective stiffness is the average stiffness
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In the Reuss case we have

and so

Cy=(c) (9)

<j=(a) (10)

(sc>) = (s)(c>) (11)

Comparing with (6) we fmd that for the Reuss model the effective compliance is the average

compliance

SR =<s> (12)

The Voigt and Reuss effective moduli form upper and lower bounds on the effective stiffness of the

medium There are two invariants for fourth rank tensors and the fundamental property of invariants

is that they do not depend on orientation in space. If the average moduli are assumed to be

independent of orientation, that is, ifwe assume the effective medium is isotropic, then each invariant

is equal to its average. Then we have from (9) for the Voigt model

C V
.... = c...
WJ nj]

and C.
v

. = c. ...

yu ijij
(13)

Similarly we have from ( 12) for the Reuss model

and (14)

For an isotropic material there are only two independent elastic moduli. Equations (13) and (14) are

therefore easily solved for the isotropic effective elastic moduli of the Voigt and Reuss models.

Cubic Crystal Symmetry
We shall further confine ourselves to the specific results of cubic crystal symmetry. There are then

only three independent components of the single crystal elastic moduli. The analysis is simplified if

we use the Walpole
3
notation for the decomposition of “unity”

I = J + K = J + K' + K" (15)

The first equality gives the isotropic and the second the cubic decomposition. The isotropic and cubic

bases are isotropic, idempotent and orthogonal to each other. See Walpole’s paper for details. The

terms in (15) can be either tensors or matrices. The isotropic Voigt and Reuss effective moduli can

then be written in terms of the following spectral decomposition

Cv = 3KWJ + 2GWK (16)

J

3K^
+

A

2Gr
(17)

where K and G are the effective bulk and shear modulus, respectively. Similarly, the cubic stiffriess

and compliance have the decompositions

c = 3kJ + 2ju'K'+2ju"K
/'

(18)
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( 19)

j r k"

3k 2//' 2ju"

in terms of the single crystal bulk modulus k and the two shear moduli ju' and ji"

,

which represent

the shear moduli in the [100] and [111] crystal directions, respectively. These fundamental

components of the cubic elastic moduli, as discussed by Walpole, are very convenient to use in the

calculations and are related to the standard elastic moduli in the Voigt notation by

K-
3 (^n "t" )

~ T (^i l

—
^12 )

1

3(sn +2sn )

1

2(^1
1

—
^12)

M C44
44

(20 )

From the first equation of (13) we find the Voigt bulk modulus AV = k and from the second we find

the effective Voigt shear modulus,

Gw =^ju'+ju" (21 )

Similarly, from the first equation of (14) we find ATR = /cand from the second we find the effective

Reuss shear modulus, GR ,

1 _ 2 3

Gr ~5ju'
+

5ju"
(22)

By examining (9), (16), (18), and (21) we conclude that we have found a rule for the orientation

averaging of a cubic, homogeneous, isotropic, disordered fourth rank tensor. If the tensor is given by

t = aJ + b'K' + b"K

"

(23)

then the effective average is

(t) = aJ + (jb' + jb")K

This rule can be used alternatively to derive equations (21) and (22).

(24)

Young’s Modulus and Diffraction
For a cubic single crystal Nye

4
derived the reciprocal of Young’s modulus in the direction [hkl] as

follows

= *n =*n- (2su - 2sn - )r (25)

where

_ h
2
k

2 +k2
l
2 +l

2
h

2

(h
2 +k2

+/
2

)
2
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When a diffracting beam shines on the Reuss model of a polycrystal, only those grains with planes

(hid) oriented to satisfy the Bragg condition will reflect and so the Reuss average of the apparent or

diffraction Young’s modulus is given by the same expression as (25). Inserting the fundamental cubic

elastic moduli from (20) we get an expression for the effective diffraction Young’s modulus of the

Reuss model, £Dr,

9k 3n'

(\_

y M'

r (27)

where Fis now regarded as a diffraction parameter that depends on which (hkl) plane is causing the

diffraction for which £Dr is measured. The effective diffraction shear modulus of the Reuss model,

GDr, is then given from the isotropic relation

FjR £DR ^V jl

\
1_

/ >

U V
r (28)

The average of the diffraction parameter Fover all orientations is 1/5 and for this value (28) reduces

to (22). We say that (28) represents the diffraction average of an effective diffraction medium. In

general, by analogy with (5), the average properties of the diffracting material can be written

((j) = CD (e)D (29)

where (e)
D

is the diffraction average strain and CD is the effective diffraction stiffness. The

motivation for this equation is that we apply the diffraction average to the strain because in diffraction

experiments the strain is measured selectively by using the Bragg equation and thus depends on the

active reflecting plane (hkl), whereas the regular average is applied to the stress because the actual

stress is measured by applying a force. The equation can be solved for the diffraction average strain

(e) D=^ = 5d <<7) (30)
k D

where SD is the effective diffraction compliance. In particular, for the Reuss model where a is

constant we fmd the effective diffraction compliance is the average diffraction compliance

Sm =(s)D (31)

By writing the decomposition

'DR

K
2Gdr

(32)

and examining (31), (19), and (28) we see that we now also have derived a mle for the diffraction

average of a cubic tensor. If the tensor is given by (23) then the diffraction average is

</>D =aJ + [b'-3(b'-b")r]K (33)

This rule can be used alternatively to derive equation (28).
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The Comparison Medium
In statistical continuum mechanics it is customary to use perturbation theory to approximate the

effective medium in terms of its deviation from a comparison medium
,
which is known and chosen

arbitrarily. From the equilibrium equations of elasticity Willis
5
and Kroner

6
derived the following

basic equation for the relationship

e = e
0
- E Sc e (34)

which Kroner called the LSD equation after Lippmann-Schwinger and Dyson. Here

Sc = c-C
0 (35)

where e and e0 are the strains and c and C0 are the stiffnesses of the polycrystal and comparison

medium, respectively. Furthermore E is the singular approximation to the modified Green's function,

which is derived from the Green’s function for the comparison medium. For the isotropic case

Kroner
6
gave it as

3K
0
+4G

0

J + -
5

/

V

- + -

3K
0
+4G

0

K (36)

where K
0
and G

0
are the bulk and shear modulus of the comparison medium The comparison

medium has the decomposition

C
0
=3K

0
J + 2G

0
K

We now solve (34) for the strain e in the polycrystal

e = aen

where we have defined the operator

a =
I + ESc

From (3) the stress in the polycrystal is given by

<7 = cae,
o

(37)

(38)

(39)

(40)

From the effective diffraction medium equation (29) we then find

(cae
0 )
= CD (ae

0 )D (41)

Since e
0

is constant, it can be eliminated. Solving we get the basic equation for the approximate

effective diffraction stiffness

CD ~{ca)-f— (42)

<«>d

This is a general and formal equation from which explicit results can be derived for special cases.

With equations (39), (36), (35), and (33) we see that CD can be expressed in terms of the single

crystal elastic constants, c, the comparison medium elastic constants, C0 ,
and the diffraction

parameter, E
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Gairola-Kroner Formula
We now decompose the approximate effective diffraction stiffness as follows

CD = 2KDJ + 2GDK (43)

where Kn and GD are the approximate effective diffraction bulk and shear modulus. Equation (42)

can be written out entirely in terms of x;
,
T, K

0 ,
and G

0 ,
by using (18), (39), (36), (37), and

calculating the averages from (24) and (33). Equating the coefficients ofJ we find that KD = k.

Equating the coefficients ofK we get

9 / -i rr

2
1 + -

5n -

'

1
|

2

(

G
0 3k + 4G

0
j

2
(p'-G

0 ) 1 + -
'

1

1

2
>

k

G
0

3k + 4G
0

(M~G0 )

(AA\~ D 1-3K 3T v "'

2
1 + -

5

"
1

i

2

G
0

3x^ + 4G
0

^

1+|
'

1

i

2

v

G0
3k + 4G

0
^

(P"~ Go)

This equation can be reduced to the following expression for the approximate effective diffraction

shear modulus

Gd(G0 )

a
0 + a l

G0 + a 2
G^

A> + AG0 + ftG0

2
(45)

where

a
0 = 30 kju'ju"

< a
x
= 3 (6 kjli' + 9 kjli* + 20^*)

a
2 = 8(2^' + 3^')

Po =30K[ju"+3(ju'-ILl'')r]

< =\5[3K + 4/u" + \2(n'-iLi")r] (46)

Pi = 40

For 7=1/5 this reduces to the Gairola-Kroner
7

formula. The shear modulus in (45) is approximate

because it is a perturbation from a comparison medium, which may be chosen arbitrarily. If we

choose G0
=°° or G0=0 we get the Voigt or Reuss approximations.

Self-Consistent Moduli
If we choose the comparison medium to be the same as the effective medium

G
0 = Gd (47)

then there is no deviation between the two media and we get the so-called self-consistent moduli. For

this case (45) reduces to

Yo + Y\Gd + Yigd~ + YiGd =0 (48)

where
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(49)

>0
=-30k/u'h"

yl
=-3 \

6k/u' - k/li" + 20ju'iu" -30k (/u' - ju") rl
<

7, = 45K, -16//-t-36/F+180(
J
u

,-/F)F

73
= 40

For F= 1/5 this reduces to the result derived by Kroner
8
for the original cubic equation of the self-

consistent effective shear modulus of a cubic polycrystal.

Diffraction Elastic Constants
In diffraction experiments it is conventional to measure the two diffraction elastic constants

,
which

occur naturally in the diffraction equations. They are given by

1

6G^
(50)

For the self-consistent case it follows from (50), (48), (49), and (20) that the diffraction elastic

constants are functions of the diffraction parameter Fand the elastic constants cn , cn, and c^: SAf
C\\, c 12 ,

C44) and 5i(F, cn, c 12 ,
C44).

Experimental Results
If Si and S2 are measured for several diffraction reflections {hid) in a polycrystal, then we can regard

Si and S? as dependent variables, and F as the independent variable in a regression analysis where

the elastic constants cn , c l2 ,
and C44 are the unknown parameters. Recently Gnaupel-Herold, Brand,

and Prask
9
measured the diffraction elastic constants for various cubic polycrystals. Their results are

summarized in Table 1.

To do the regression analysis we write chi-square

Z
2

(cn’C12
’C

44 ) = X
S™

eas -S

<ns,)

calc V (

+
meas

^
c

G(S,)

x2
calc \

(51)

and minimize with respect to Cu, cn, and C44 . The results are given in Table 2. Here A represents the

anisotropy factor

2c
A= (52)

cn
~ c

i2

and ^red is % divided by the degrees of freedom (DoF). A value of j
2

red = 1 represents the best fit.
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Table 1. Experimental results for steel, aluminum and copper

The mass content of elements other than iron in the steel samples was 2.25% Cr and 1% Mo. The

aluminum sample contained 0.25% Cu, 0.6% Si, 1.0% Mg, 0.2% Cr. The copper sample was high-

conductivity copper with a purity of 99.9%. The values in parentheses represent the standard

deviations.

hkl [TPa
1

] V2S2 [TPa
1

]

Steel

002 -1.758 (±0.084) 7.522 (±0.150)

Oil -1.121 (±0.062) 5.499 (±0.101)

211 -1.010 (±0.103) 5.342 (±0.172)

310 -1.692 (±0.099) 6.852 (±0.166)

Aluminum
002 -5.081(±0.243) 19.765(±0.437)

022 -5.075(±0.228) 18.793(±0.435)

222 -4.749(±0.287) 18.318(±0.563)

311 -4.742(±0.309) 19.069(±0.638)

331 -4.685(±0.296) 1 7.808( ±0.537)

420 -4.756(±0.260) 18.306(±0.499)

Copper

002 -3.87(±0.23) 13.66(±0.35)

022 -2.62(±0.37) 9.26(±0.66)

111 -2.32(±0.29) 8.77(±0.39)

311 -2.47(±0.1 1) 10.51 (±0.21)

331 -2.12(±0.35) 8.7 1 (±0.62)

Table 2. Single-crystal elastic stiffnessesfor aluminum, copper and steel

The quality of each material calculation can be assessed by means of the reduced X hi the last

column. The copper sample exhibited some residual texture, which could not be eliminated by

repeated cold working and recrystallization. The values in parenthesis are the standard deviations.

Material cn (GPa) cn (GPa) C44 (GPa) A DoF X red

Steel 222.8 (±10.6) 123.5 (±10.4) 121.7 (±3.7) 2.45 5 0.96

Aluminum 114.0 (±7.9) 65.3 (±7.6) 28.5 (±0.8) 1.17 9 0.64

Copper 157.7 (±13.7) 104.5 (±13.9) 74.2 (±3.3) 2.79 7 1.70

Graphs of the diffraction elastic constants based in these results for the single crystal elastic constants

are shown in Figs. 1, 2 and 3. The experimental values are taken from Table 1 and the error bars

represent the standard deviations. The fit is good for steel with a questionable point for Si at (3 10).

There is much more error for aluminum, which could be attributed to the fact that aluminum is close

10



to isotropic, i.e. A is near 1, and that therefore the % function has a much shallower minimum. The

copper results are fair. These results for the single crystal elastic constants agree reasonably well with

those in the literature
9

.

Conclusion
We have shown how the method of statistical continuum mechanics can be used to derive self-

consistent expressions for the diffraction elastic constants of a cubic polycrystal in terms of the single

crystal elastic constants. The diffraction elastic constants can be measured and a regression analysis

can then deduce the single crystal elastic constants. This method has proven to be feasible

experimentally. It is possible to use it as an alternative method for determining single crystal elastic

constants experimentally. For this simple analysis to work the polycrystal must be homogeneous,

isotropic, and disordered, i.e. there must be no texture.
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Experimental and analytical results for the first diffraction elastic constant of steel

Fig. lb: Experimental and analytical results for the second diffraction elastic constant of steel
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Diffraction Parameter, 3T

Fig. 2a: Experimental and analytical results for the first diffraction elastic constant of aluminum

Diffraction Parameter, 3T

Fig. 2b: Experimental and analytical results for the second diffraction elastic constant of

aluminum
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Fig. 3a: Experimental and analytical results for the first diffraction elastic constant of copper

Fig. 3a: Experimental and analytical results for the second diffraction elastic constant of copper

— 14 —






